

Aggregating Multiple Heuristic Signals as Supervision for Unsupervised Automated Essay Scoring

Cong Wang, Zhiwei Jiang, Yafeng Yin, Zifeng Cheng, Shiping Ge, Qing Gu State Key Laboratory for Novel Software Technology, Nanjing University, China

Unsupervised Automated Essay Scoring

- Automated Essay Scoring (AES) aims to score writing quality of essays without human intervention.
- SOTA AES models are trained in a supervised way with large labeled corpora, comprising essays and their groundtruth quality scores.
- Collecting labeled essays is time-consuming and labor-intensive.

• Unsupervised AES does not require groundtruth scores for training, and has potential in scientific research and practical applications.

- Chen et al. use *number of unique term* as initial score, and iteratively propagate scores to other essays in the same cluster.
- Zhang and Litman use *word count* as weak supervision to train AES model. 😣

- A single quality signal cannot comprehensively describe the quality of essay.
- More quality signals bring stronger and more robust supervision.

* [Chen et al., 2010] Yen-Yu Chen, Chien-Liang Liu, Tao-Hsing Chang, and Chia-Hoang Lee. 2010. An unsupervised automated essay scoring system. IEEE Computer Architecture Letters, 25(05):61–67.

* [Zhang and Litman, 2021] Haoran Zhang and Diane Litman. 2021. Essay quality signals as weak supervision for source-based essay scoring. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 85–96.

A novel framework for Unsupervised AES by Learning from Rank Aggregation (ULRA)

Core idea is to introduce *multiple heuristic quality signals* as pseudo-groundtruth, and then train a neural AES model by *learning from the aggregation* of them.

Our Method / HER

Our Method / DPRA

Our Method / Scoring Strategy

Experiments

Setting	Method		P1	P2	P3	P4	P5	P6	P7	P8	Avg.					
One-Shot	TGOD (Jiang et al., 2021)		.772	.581	.690	.725	.776	.691	.766	.505	.688					
Unsupervised	Mean of the 20 quality signals Maximum of the 20 quality signals		.283 .469	.333 .536	.234 .394	.353 .471	.253 .375	.206 .323	.189 .295	.264 .458	.264 .415					
	Signal Clustering (Chen et al., 2010) Signal Clustering w/ averaged signal as supervision Signal Clustering w/ averaged output as prediction Signal Clustering w/ aggregated signal as supervision Signal Clustering w/ aggregated output as prediction Signal Regression (Zhang and Litman, 2021) Signal Regression w/ averaged signal as supervision Signal Regression w/ averaged output as prediction Signal Regression w/ averaged output as prediction Signal Regression w/ averaged output as prediction Signal Regression w/ aggregated signal as supervision Signal Regression w/ aggregated output as prediction		.355	.386	.370	.446	.509	.425	.428	.334	.407					
			.393	.408 .413 .425	.383 .384 .404	.480 .498 .466	.500	.425 .435 .461	.470 .473 .465	.370	.436				1	
			.363	.419	.397	.467	.544	.464	.467	.379	.438			rai	150	uci
			.224 .232 .249 246	.321 .326 .342 342	.264 .271 .289 263	.404 .415 .430 434	.301 .303 .311 309	.441 .451 .470 454	.292 .304 .316 304	.353 .368 .374 349	.325 .334 .348 338					
			.256	.344	.284	.451	.333	.496	.341	.345	.356	P3 P	P4	P5	P6	P7
	Signal Aggregation (Chen et al., 2013)		.435	.480	.454	.608	.452	.439	.489	.218	.455	.621	.742	.784	.775	.730
	ULRA (Ours)		.757	.621	.547	.628	.664	.562	.694	.450	.615	.072 .731	.814 .801 787	.803	.792	.762
			R²BERT (Yang et al., 2020) (Uto et al., 2020)								.719 .651	.698 .804	.845 .888	.808 .841 .885	.814 .847 .817	.780 .839 .864
		Cross-Prompt	CN HA BE	NN-LSTN A-LSTM	A-Att (D) (Cao et a	ong et al. d., 2020) 220)	, 2017)			.592 .633 661	.553 .545 669	.666 .685 651	.680 .683 698	.690 .729 709	.656 .629 599	.640 .281 725
			Ma	ean of the	e 20 qual of the 20	lity signa quality s	ls signals			.320	.408	.285 .420	.419 .549	.262	.296 .464	.305 .427
Unsupervise				Signal Regression (Zhang and Litman, 2021) Signal Regression w/ averaged signal as supervision							.309 .328	.216 .219	.338 .355	.234 .247	.189 .183	.151 .162
			Sig Sig Sig	gnal Regi gnal Regi gnal Regi	ression w ression w ression w	7/ averag 7/ aggreg 7/ aggreg	ed outpu ated sign ated outi	it as pred ial as sup put as pr	liction pervision rediction	.269 .252 .258	.341 .314 .319	.213 .239 .250	.364 .351 .365	.239 .246 .248	.193 .198 .216	.180 .167 .191
				LRA (Ou	rs)			F		.759	.508	.608	.644	.711	.577	.661

ctive

P8

.617

.705

.684

.734

.744

.645

.565

.436

.574

.272

.444

.247

.248

.248

.271

.300

.446

Avg.

.705

.764

.773

.773

.794

.801 .630

.578

.661

.320

.474

.241

.249

.256 .255

.268

.614

Experiments

Setting	Method		P1	P2	P3	P4	P5	P6	P7	P8	Avg.							
One-Shot	TGOD (Jiang et al., 2021)		.772	.581	.690	.725	.776	.691	.766	.505	.688							
	Mean of the 20 quality signals Maximum of the 20 quality signals		.283 .469	.333 .536	.234 .394	.353 .471	.253 .375	.206 .323	.189 .295	.264 .458	.264 .415							
Unsupervised	Signal Clustering (Chen et al., 2010) Signal Clustering w/ averaged signal as supervision Signal Clustering w/ averaged output as prediction Signal Clustering w/ aggregated signal as supervision Signal Clustering w/ aggregated output as prediction		.355 .393 .405 .359 .363	.386 .408 .413 .425 .419	.370 .383 .384 .404 .397	.446 .480 .498 .466 .467	.509 .500 .509 .535 .544	.425 .425 .435 .461 .464	.428 .470 .473 .465 .467	.334 .354 .370 .371 .379	.407 .427 .436 .436 .438							
	Signal Regression (Zhang and Litman, 2021) Signal Regression w/ averaged signal as supervision Signal Regression w/ averaged output as prediction		.224 .232 .249	.321 .326 .342	.264 .271 .289	.404 .415 .430	.301 .303 .311	.441 .451 .470	.292 .304 .316	.353 .368 .374	.325 .334 .348							
	Signal Regression w/ aggregated outpu	Setting	Me	ethod						P1	P2	P3	P4	P5	P6	P7	P8	Avg.
	Signal Aggregation (Chen et al., 2013) ULRA (Ours)	BLRR (Phandi et al., 2015) CNN-LSTM-Att (Dong et al., 2017) TSLF (Liu et al., 2019)							.761 .822 .852	.606 .682 .736	.621 .672 .731	.742 .814 .801	.784 .803 .823	.775 .811 .792	.730 .801 .762	.617 .705 .684	.705 .764 .773	
Inductive		Supervised	HA R ² (Ut	HA-LSTM (Cao et al., 2020) R²BERT (Yang et al., 2020) (Uto et al., 2020)							.718 .719 .651	.711 .698 .804	.787 .845 .888	.808 .841 .885	.814 .847 .817	.786 .839 .864	.734 .744 .645	.773 .794 .801
		Cross-Prompt	CN HA BE	NN-LSTM A-LSTM CRT (Cac	M-Att (D (Cao et a) et al., 20	ong et al. 1., 2020) 020)	, 2017)			.592 .633 .661	.553 .545 .669	.666 .685 .651	.680 .683 .698	.690 .729 .709	.656 .629 .599	.640 .281 .725	.565 .436 .574	.630 .578 .661
			Me Ma	Mean of the 20 quality signals Maximum of the 20 quality signals							.408 .606	.285 .420	.419 .549	.262 .368	.296 .464	.305 .427	.272 .444	.320 .474
	Unsupervised	Sig Sig Sig Sig	Signal Regression (Zhang and Litman, 2021) Signal Regression w/ averaged signal as supervision Signal Regression w/ averaged output as prediction Signal Regression w/ aggregated signal as supervision Signal Regression w/ aggregated output as prediction							.309 .328 .341 .314 .319	.216 .219 .213 .239 .250	.338 .355 .364 .351 .365	.234 .247 .239 .246 .248	.189 .183 .193 .198 .216	.151 .162 .180 .167 .191	.247 .248 .248 .271 .300	.241 .249 .256 .255 .268	
ULRA (Ours)								.759	.508	.608	.644	.711	.577	.661	.446	.614		

Conclusion

- We aim to perform essay scoring under the unsupervised setting.
- We propose ULRA to train a neural AES model by aggregating the partial-order knowledge contained in multiple heuristic quality signals.
- To address the conflicts among different signals and get a unified supervision, we design a deep pairwise rank aggregation loss for model training.
- Experimental results demonstrate the effectiveness of ULRA for unsupervised essay scoring.

THANKS!

