

1. Introduction

- Automated Essay Scoring (AES) aims to score writing quality of essays without human intervention.
- SOTA AES models are trained in a supervised way with large labeled corpora.
- Collecting a large volume of labeled essays is both timeconsuming and labor-intensive.
- Unsupervised AES does not require groundtruth scores for training, and has potential in scientific research and practical applications.

2. Motivation

- Two existing unsupervised AES methods select one heuristic quality signal to train the models, but both of which achieve poor performance.
- A single heuristic quality signal can not fully describe the quality of essay.
- More heuristic quality signals should be introduced to bring stronger and more robust supervision.

4. Experiments

Performance Comparison

Setting	Method	P1	P2	P3	P4	P5	P6	P7	P8	Avg.
One-Shot	TGOD (Jiang et al., 2021)	.772	.581	.690	.725	.776	.691	.766	.505	.688
Unsupervised	Mean of the 20 quality signals Maximum of the 20 quality signals	.283 .469	.333 .536	.234 .394	.353 .471	.253 .375	.206 .323	.189 .295	.264 .458	.264 .415
	Signal Clustering (Chen et al., 2010) Signal Clustering w/ averaged signal as supervision Signal Clustering w/ averaged output as prediction Signal Clustering w/ aggregated signal as supervision Signal Clustering w/ aggregated output as prediction	.355 .393 .405 .359 .363	.386 .408 .413 .425 .419	.370 .383 .384 .404 .397	.446 .480 .498 .466 .467	.509 .500 .509 .535 .544	.425 .425 .435 .461 .464	.428 .470 .473 .465 .467	.334 .354 .370 .371 .379	.407 .427 .436 .436 .438
	Signal Regression (Zhang and Litman, 2021) Signal Regression w/ averaged signal as supervision Signal Regression w/ averaged output as prediction Signal Regression w/ aggregated signal as supervision Signal Regression w/ aggregated output as prediction	.224 .232 .249 .246 .256	.321 .326 .342 .342 .344	.264 .271 .289 .263 .284	.404 .415 .430 .434 .451	.301 .303 .311 .309 .333	.441 .451 .470 .454 .496	.292 .304 .316 .304 .341	.353 .368 .374 .349 .345	.325 .334 .348 .338 .356
	Signal Aggregation (Chen et al., 2013)	.435	.480	.454	.608	.452	.439	.489	.218	.455
	ULRA (Ours)	.757	.621	.547	.628	.664	.562	.694	.450	.615

Transductive Setting

Setting	Method	P1	P2	P3	P4	P5	P6	
	BLRR (Phandi et al., 2015)	.761	.606	.621	.742	.784	.775	
	CNN-LSTM-Att (Dong et al., 2017)	.822	.682	.672	.814	.803	.811	
Supervised	TSLF (Liu et al., 2019)	.852	.736	.731	.801	.823	.792	
Supervised	HA-LSTM (Cao et al., 2020)	.828	.718	.711	.787	.808	.814	
	R²BERT (Yang et al., 2020)	.817	.719	.698	.845	.841	.847	
	(Uto et al., 2020)	.852	.651	.804	.888	.885	.817	
	CNN-LSTM-Att (Dong et al., 2017)	.592	.553	.666	.680	.690	.656	
Cross-Prompt	HA-LSTM (Cao et al., 2020)	.633	.545	.685	.683	.729	.629	
	BERT (Cao et al., 2020)	.661	.669	.651	.698	.709	.599	
	Mean of the 20 quality signals	.320	.408	.285	.419	.262	.296	
	Maximum of the 20 quality signals	.511	.606	.420	.549	.368	.464	
	Signal Regression (Zhang and Litman, 2021)	.244	.309	.216	.338	.234	.189	
Unsupervised	Signal Regression w/ averaged signal as supervision	.253	.328	.219	.355	.247	.183	
	Signal Regression w/ averaged output as prediction	.269	.341	.213	.364	.239	.193	
	Signal Regression w/ aggregated signal as supervision	.252	.314	.239	.351	.246	.198	
	Signal Regression w/ aggregated output as prediction	.258	.319	.250	.365	.248	.216	
	ULRA (Ours)	.759	.508	.608	.644	.711	.577	

Aggregating Multiple Heuristic Signals as Supervision for Unsupervised Automated Essay Scoring

Cong Wang, Zhiwei Jiang, Yafeng Yin, Zifeng Cheng, Shiping Ge, Qing Gu State Key Laboratory for Novel Software Technology, Nanjing University, China

3. ULRA Framework

by learning from the aggregation of them.

Ablation Study

ADIATION Study									
	P1	P2	P3	P4	P5	P6	P7	P8	Avg.
Full Model	.757	.621	.547	.628	.664	.562	.694	.450	.615
- learnable η_k (fix $\eta_k = 1$) - pretrained neural model (using CNN-LSTM-Att)	.702 .634	.610 .599	.504 .501	.610 .628	<u>.651</u> .411	.547 .553	.610 .641	.380 .419	.577 .548
 pretrained neural model (using HA-LSTM) neural model (all s_i are set as learnable parameters) 	.653 .432	<u>.613</u> .481	.513 .451	.605 .519	.600 .600	.501 .450	.615 .484	.436 .213	.567 .454
 surface signals (preposition & readability signals) preposition signals (surface & readability signals) 	<u>.714</u> .694	.610 .584	.419 .504	.593 .613	.623 .649	.541 .515	.585 .643	.451 .451	.567 .582
 readability signals (surface & preposition signals) preposition & readability signals (only surface signals) 	.712 .672	.584 .588	.471 .543	.626 .628 518	.631 .597	.500 .497	<u>.683</u> .612	.431 .434	.580 .571
 – surface & readability signals (only preposition signals) – surface & preposition signals (only readability signals) 	.654	.555	.441	.563	.483	.514	.661	.403	.566
w/ averaged signal as supervision w/ averaged output as prediction w/ aggregated signal as supervision w/ aggregated output as prediction	.524 .536 .548 573	.541 .542 .544	.501 .519 .531 530	.615 .621 .624	.646 .632 .648	.542 .561 .548	.545 .553 .562	.245 .270 .262 260	.520 .529 .533

Model Analysis: Part I

Core idea is to introduce multiple heuristic quality signals as pseudo-groundtruth, and then train a neural AES model

• Model Analysis: Part II Best-N ---- Worst-N + N=1 Δ N=4 Ο N=7 Π N=10 P8 Avg P7

Effect of More Signals.

Prompts

The results are reported by training with the N best or worst signals from the signal set.

		P1	P2	P3	P4	P5	P6	P7	P8	Avg.
Т	G	.674	.789	.998	.999	.922	.897	.812	.585	.835
	O	.757	.621	.547	.628	.664	.562	.694	.450	.615
Ι	G	.635	.610	.567	.842	.713	.769	.717	.448	.663
	O	.759	.508	.608	.644	.711	.577	.661	.446	.614

Groundtruth as Signal.

Comparison the performance of applying ground-truth score as the quality signal (G) with that of applying 20 heuristic quality signals (O) under all 8 prompts of the ASAP dataset. T and I denote under the transductive and inductive settings, respectively.

Heuristic Essay Ranking (HER)

generates partial-order pairs through ranking essays according to heuristic quality signals.

Deep Pairwise Rank Aggregation (DPRA)

trains a neural AES model by aggregating the partial-order pairs derived from multiple quality signals into a unified supervision.

transforms the predicted scores given by the neural AES model into the range of the pre-

	P1	P2	P3	P4	P5	P6	P7	P8
Transductive	.7438	.6855	.6677	.7813	.5365	.6033	.8360	.8932
Inductive	.7442	.6659	.6052	.7994	.5681	.6259	.8254	.9007

Effect of Confidence Weights.

Spearman's correlation coefficient between the learned confidence weights and corresponding QWKs, which are calculated between groundtruth scores and the employed 20 signals under each prompt.

	P1	P2	P3	P4	P5	P6	P7	P8	Avg.
G	.840	.693	.688	.730	.807	.704	.730	.610	.725
N T U	.545 .576 .543	.551 .595 .568	.645 .631 .632	.729 .727 .728	.736 .742 .730	.554 .553 .554	.601 .673 .586	.300 .346 .296	.583 .605 .580
0	.757	.621	.547	.628	.664	.562	.694	.450	.615

Effect of Different Scoring Strategies.

G, N, T, and U denote the scoring strategies based on the groundtruth, normal, triangle, and uniform distributions, respectively. O denotes our scoring strategy.

