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1. Introduction 2. Motivation

• Ordinal classification aims to predict the label of samples on
the ordinal scale.

• Existing methods seek to learn the specific feature space,
which fall into two fashions: classification & regression.

• In this work, we propose constrained proxies learning (CPL)
to explicitly control the global layout of classes, making it
more suitable for ordinal classification.

• The global layout of samples in the feature space is explicitly
constrained to make it reflect the ordinal nature of classes.

(a) Unconstrained Feature Space (b) Ordinal Constrained Feature Space 
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3. Constrained Proxies Learning (CPL)

• CPL learns a proxy for each class in feature space so as to
make samples belonging to the same class can be closely
clustered together around the corresponding proxy.

• CPL aims to constrain the global layout of proxies in feature
space to make it more suitable for ordinal classification.

• The basic objective is to encourage the sample feature to be
close to the target proxy and to be far away from other proxies
according to their relative ordinal distance with the target
proxy in the feature space.
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4. Hard-CPL 5. Soft-CPL

• Proxies are constrained to be generated in a specific way so
that they can be placed in a predefined ordinal layout.

• Two instantiations: the linear layout specific to the Euclidean
distance metric (H-L); and the semicircular layout specific to
the cosine similarity metric (H-S).
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(b) Semicircular Layout
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• Proxies can be learned freely. The proxy layout is constrained
to produce unimodal proxy-to-proxies similarity distribution
for each proxy.

• To constrain the proxy-to-proxies similarity distribution to be
unimodal, we define a unimodal smoothed label distribution
𝑈! 𝑘∗ by a unimodal smoothing function 𝐸 ⋅ ⋅ .

• For the unimodal smoothing function, two classic unimodal
distributions are considered as examples: the Poisson
distribution and the Binomial distribution.
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6. Experiments

• Performance Comparison • Model Analysis • Visualization

• For the visualization of Hard-CPL and Soft-CPL, proxies and
feature clusters are both arranged in expected ordinal layouts.


