

Controlling Class Layout for Deep Ordinal Classification via Constrained Proxies Learning

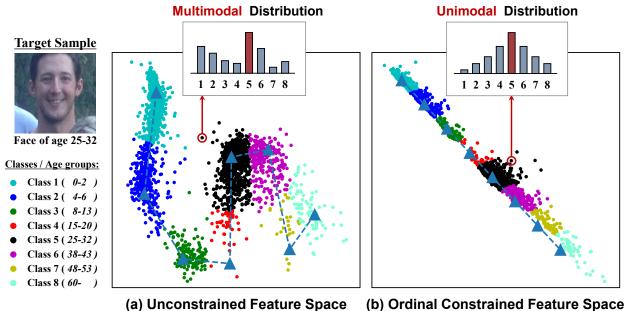
Cong Wang, Zhiwei Jiang, Yafeng Yin, Zifeng Cheng, Shiping Ge, Qing Gu State Key Laboratory for Novel Software Technology, Nanjing University, China

1. Introduction

- Ordinal classification aims to predict the label of samples on the ordinal scale.
- Existing methods seek to learn the specific feature space, which fall into two fashions: classification & regression.
- In this work, we propose constrained proxies learning (CPL) to explicitly control the global layout of classes, making it more suitable for ordinal classification.

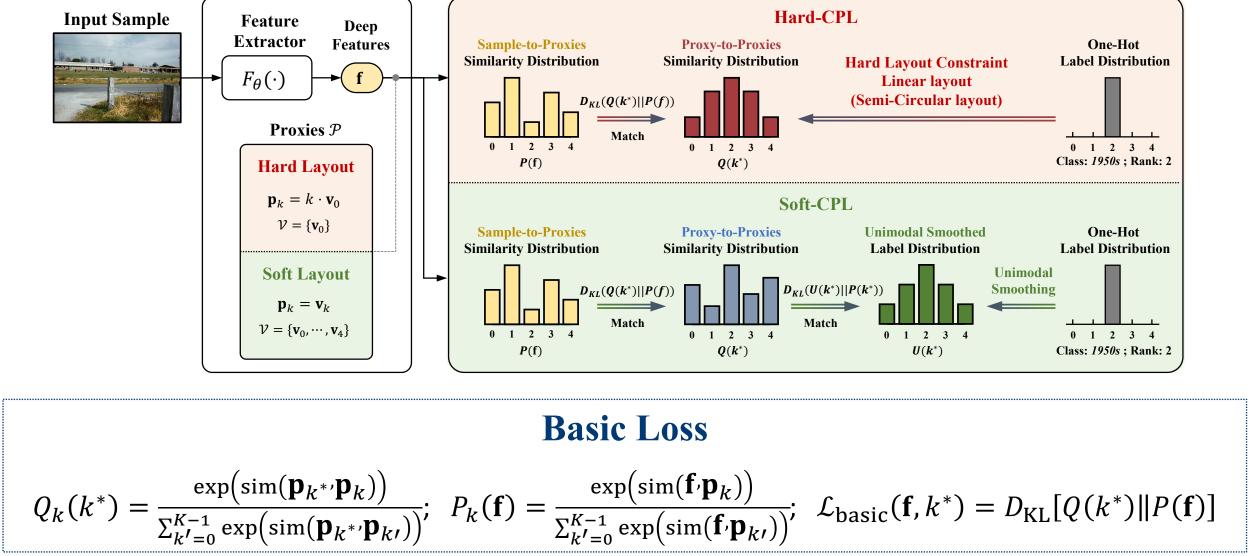
2. Motivation

• The global layout of samples in the feature space is explicitly constrained to make it reflect the ordinal nature of classes.



⁽Our CPL)

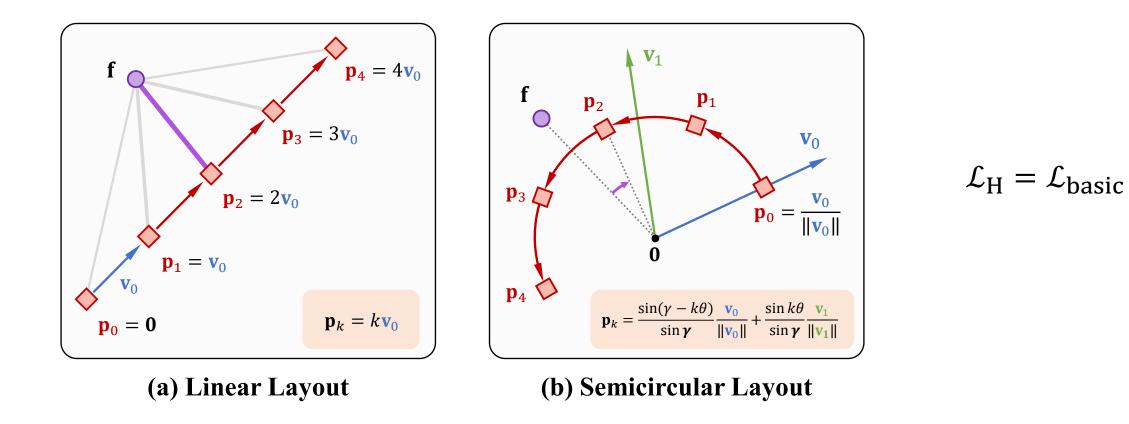
3. Constrained Proxies Learning (CPL)



- CPL learns a proxy for each class in feature space so as to make samples belonging to the same class can be closely clustered together around the corresponding proxy.
- CPL aims to constrain the global layout of proxies in feature space to make it more suitable for ordinal classification.
- The basic objective is to encourage the sample feature to be \bullet close to the target proxy and to be far away from other proxies according to their relative ordinal distance with the target proxy in the feature space.

4. Hard-CPL

- Proxies are constrained to be generated in a specific way so that they can be placed in a predefined ordinal layout.
- Two instantiations: the linear layout specific to the Euclidean distance metric (H-L); and the semicircular layout specific to the cosine similarity metric (H-S).



5. Soft-CPL

- Proxies can be learned freely. The proxy layout is constrained to produce unimodal proxy-to-proxies similarity distribution for each proxy.
- To constrain the proxy-to-proxies similarity distribution to be unimodal, we define a unimodal smoothed label distribution $U_k(k^*)$ by a unimodal smoothing function $E(\cdot; \cdot)$.
- For the unimodal smoothing function, two classic unimodal distributions are considered as examples: the Poisson

6. Experiments

Performance Comparison

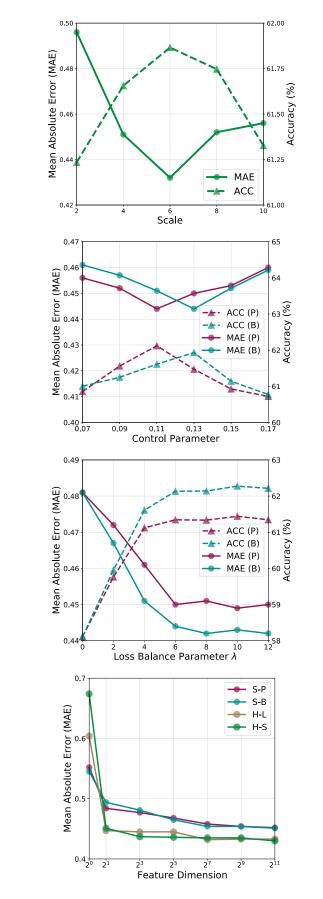
Table 1: The performance (accuracy and MAE) of all comparison methods on Historical Color dataset and Adience Face dataset. The feature extractors are all VGG-16. The best measures are in **bold**, and the second best measures are underlined.

Methods			Historical	Color	Adience Face		
memor			Accuracy (%) ↑	MAE ↓	Accuracy (%) ↑	$\mathbf{MAE}\downarrow$	
Classification (Liu, Kong, and Goh 2018)			48.94 ± 2.54	0.89 ± 0.06	54.0 ± 6.3	0.61 ± 0.08	
Regression (Niu et al. 2016)			42.24 ± 2.91	0.79 ± 0.03	56.3 ± 4.9	0.56 ± 0.07	
Ranking (Li et al. 2021)			44.67 ± 4.24	0.81 ± 0.06	56.7 ± 6.0	0.54 ± 0.08	
CNNPOR (Liu, Kong, and Goh 2018)			50.12 ± 2.65	0.82 ± 0.05	57.4 ± 5.8	0.55 ± 0.08	
GP-DNNOR (Liu, Wang, and Kong 2019)			46.60 ± 2.98	0.76 ± 0.05	57.4 ± 5.5	0.54 ± 0.07	
SORD (Diaz and Marathe 2019)			_	_	59.6 ± 3.6	0.49 ± 0.03	
POEs (Li et al. 2021)			54.68 ± 3.21	0.66 ± 0.05	60.5 ± 4.4	0.47 ± 0.06	
		Euclidean Distance	52.20 ± 3.84	0.71 ± 0.07	58.1 ± 3.2	0.48 ± 0.05	
UPL		Cosine Similarity	51.32 ± 2.99	0.74 ± 0.05	56.8 ± 4.5	$0.51\pm0.0^{\circ}$	
CPL	Hard-Linear	Euclidean Distance	55.71 ± 3.20	$\textbf{0.63} \pm \textbf{0.06}$	61.6 ± 2.6	0.43 ± 0.04	
	Hard-Semicircular	Cosine Similarity	55.41 ± 3.21	$\underline{0.64\pm0.06}$	61.8 ± 3.1	0.43 ± 0.04	
	Soft Doiggon	Euclidean Distance	57.28 ± 3.41	0.65 ± 0.07	61.3 ± 3.7	0.45 ± 0.05	
	Soft-Poisson	Cosine Similarity	56.99 ± 2.44	0.65 ± 0.05	61.1 ± 4.0	0.46 ± 0.03	
		Euclidean Distance	$\textbf{57.96} \pm \textbf{3.14}$	0.66 ± 0.08	$\textbf{62.1} \pm \textbf{3.6}$	0.44 ± 0.04	
	Soft-Binomial	Cosine Similarity	57.66 ± 3.11	0.65 ± 0.06	61.9 ± 4.5	0.44 ± 0.05	

Table 2: The performance (accuracy and MAE) of all comparison methods on Image Aesthetics dataset. The feature extractors are all VGG-16. The best measures are in **bold**, and the second best measures are underlined.

Methods		Accuracy (%) ↑				$\mathbf{MAE}\downarrow$					
WICHIOUS		Nature	Animals	Urban	People	Overall	Nature	Animals	Urban	People	Overall
Classification (Liu, Kong, and Goh 2018)		70.97	68.02	68.19	71.63	69.45	0.305	0.342	0.374	0.412	0.376
Regression (Li et al. 2021)		71.52	70.72	71.22	69.72	70.80	0.378	0.397	0.387	0.400	0.390
Ranking (Niu et al. 2016)		69.81	69.10	66.49	66.49	68.96	0.313	0.331	0.349	0.312	0.326
CNNPOR (Liu, Kong, and Goh 2018)		71.86	69.32	69.09	69.94	70.05	0.294	0.322	0.325	0.321	0.316
SORD (Diaz and Marathe 2019)		73.59	70.29	73.25	70.59	72.03	0.271	0.308	0.276	0.309	0.290
POEs (Li et al. 2021)		73.62	71.14	72.78	72.22	72.44	0.273	0.299	0.281	0.293	0.287
	Euclidean Distance	71.82	68.21	69.24	68.98	69.56	0.283	0.343	0.313	0.341	0.320
UPL	Cosine Similarity	72.88	68.68	69.88	69.81	70.31	0.284	0.325	0.311	0.352	0.318
Hard-Linear	Euclidean Distance	74.43	72.11	72.99	72.53	73.02	0.260	0.289	0.283	0.287	0.280
Hard-Semicircular	Cosine Similarity	74 35	71 50	72.91	72 33	72 77	0 262	0 297	0 288	0 290	0 284

Model Analysis



distribution and the **Binomial** distribution.

$$U_{k}(k^{*}) = \frac{\exp(E(k;k^{*}))}{\sum_{k'=0}^{K-1} \exp(E(k';k^{*}))}; \ \mathcal{L}_{\text{unimodal}}(k^{*}) = D_{\text{KL}}[U(k^{*})||Q(k^{*})]; \ \mathcal{L}_{\text{S}} = \mathcal{L}_{\text{basic}} + \alpha \mathcal{L}_{\text{unimodal}}$$

• Visualization

(a) UPL

Class 1 (0-2

🔵 Class 2 (4-6)

Class 3 (8-13)

Class 4 (15-20)

• Class 5 (25-32)

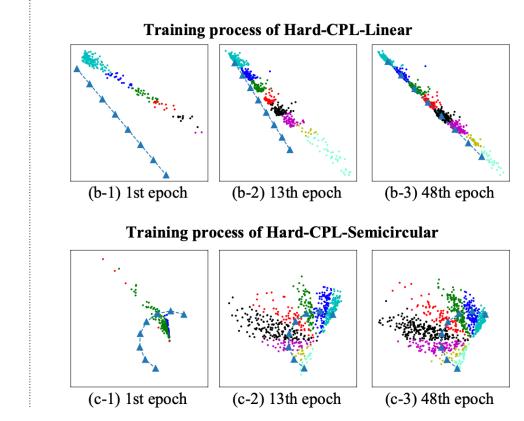
Class 6 (38-43)

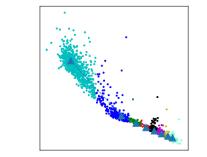
Class 7 (48-53)

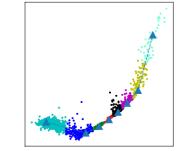
🕨 Class 8 (*60-*

A Proxies

(b) Hard-CPL-Linear (c) Hard-CPL-Semicircular

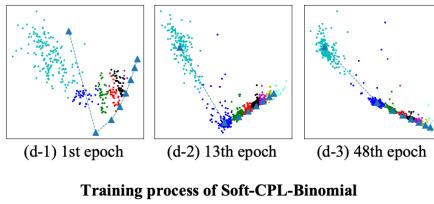


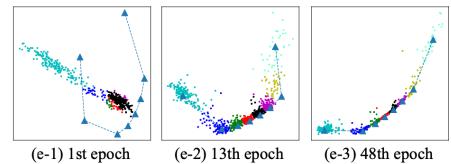




(e) Soft-CPL-Binomial (d) Soft-CPL-Poisson

Training process of Soft-CPL-Poisson





• For the visualization of Hard-CPL and Soft-CPL, proxies and

