

I. INTRODUCTION

- We aims to leverage multiple text2image diffusion models to dig out better generation.
- The prompts, noises, timesteps, and spatial locations have an impact on the denoising capabilities.
- We propose Adaptive Feature Aggregation (AFA), which dynamically adjusts contributions of multiple models at feature level by taking into account various states.

IV. VISUALIZATION & ANALYSIS

(a) **Prompt:** An astronaut is riding a horse. (b) **Prompt:** A single clock is sitting on a table.

(d) **Prompt:** *Two dogs on the street.*

Ensembling Diffusion Models via Adaptive Feature Aggregation

¹Nanjing University, ²Tencent AIPD; * Equal Contribution, [†]Corresponding Author

II. METHOD

- AFA ensembles multiple diffusion models that share same architecture but different parameters.
- **SABW** feature aggregator is learned to aggregate output features of each block from multiple U-Net denoisers.
 - Only **SABW feature aggregators** are **trained**, while **denoisers** are **frozen**.

e) **Promnt:** A raccoon wearing formal clothes and wearing a tophat. Oil painting in the style of Vincent Van Gogh.

Cong Wang¹*, Kuan Tian²*, Yonghang Guan², Fei Shen², Zhiwei Jiang^{1†}, Qing Gu¹, Jun Zhang^{2†}

III. EXPERIMENTS

	COCO 2017			Draw Bench Prompts				
	FID↓	IS	CLIP-I	CLIP-T	AES	PS	HPSv2	IR
Base Model A	13.01	5.65	.6724	.2609	5.4102	21.6279	27.8007	.3544
Base Model B	13.45	5.43	.6775	.2652	5.5013	21.4624	27.7246	.2835
Base Model C	12.32	6.32	.6890	.2566	5.4881	21.8031	27.9652	.3922
Wtd. Merging	10.65	6.93	.6861	.2626	5.4815	21.7272	27.9086	.3909
MBW	11.03	6.51	.6870	.2624	5.4812	21.7201	27.9080	.3922
autoMBW	13.35	5.51	.6772	.2577	5.5056	21.4785	27.8192	.3672
MagicFusion AFA (Ours)	10.53 9.76	6.85 7.14	.6751 .6926	.2620 .2675	5.3431 5.5201	21.3840 21.8263	27.8105 27.9734	.3317 .4388

Quantitative comparison for *ER*, MMR, and RV.

diffusion models based on context and timesteps.

Tencent腾讯

	COCO 2017			Draw Bench Prompts				
	$\overline{\text{FID}}\downarrow$	IS	CLIP-I	CLIP-T	AES	PS	HPSv2	IR
Base Model A Base Model B	12.12	5.66	.6849 6818	.2623	5.5641	21.8013	28.0183	.4238
Base Model C	12.05	5.95	.6638	.2642	5.5712	21.4936	27.8089	.3367
Wtd. Merging MBW autoMBW	11.53 12.06 12.39	6.56 6.42 5.62	.6824 .6826 .6774	.2631 .2632 .2588	5.5756 5.5772 5.5478	21.7516 21.7487 21.5135	28.0014 28.0029 27.9873	.4387 .4396 .3513
MagicFusion AFA (Ours)	11.63 10.27	7.13 7.42	.6790 .6855	.2640 .2717	5.4674 5.5798	21.4270 21.8059	27.9608 28.0371	.4194 .4892

Quantitative comparison for *AR*, CR, and RCR.

	IR (Group I)	IR (Group I
AFA (Full Model)	.4388	.4892
Only Ensembling Last Block	.4176	.4374
Block-Wise Averaging	.4001	.4372
Noise Averaging	.3919	.4355
w/o Spatial Location	.4044	.4610
w/o Timestep	.4235	.4622
w/o Textual Condition	.4163	.4559

Ablation study of AFA.

Greater tolerance for fewer inference steps.

