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I.  INTRODUCTION

• We aims to leverage multiple text2image diffusion models 
to dig out better generation.

• The prompts, noises, timesteps, and spatial locations 
have an impact on the denoising capabilities.

• We propose Adaptive Feature Aggregation (AFA), which 
dynamically adjusts contributions of multiple models at 
feature level by taking into account various states.
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II.  METHOD

• AFA ensembles multiple diffusion models that share same architecture but
different parameters. 

• SABW feature aggregator is learned to aggregate output features of each block 
from multiple U-Net denoisers.

• Only SABW feature aggregators are trained, while denoisers are frozen.

IV.  VISUALIZATION & ANALYSIS

III.  EXPERIMENTS

Quantitative comparison for ER, 
MMR, and RV.

Quantitative comparison for AR, 
CR, and RCR.

Quantitative comparison with 
two base models.

Ablation study of AFA.

(a) Prompt: An as!onaut is riding a horse.

(b) Prompt: A pizza is being cooked in "e oven.

Inference StepsInference Steps

(a-1) 1-st block (a-2) 24-th (penultimate) block

(b-1) 1-st block (b-2) 24-th (penultimate) block
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(a) Prompt: A single clock is si!ing on a table.
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(b) Prompt: Two dogs on "e s#eet. 
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(d) Prompt: Two dogs on !e s"eet. 

(c) Prompt: A red colored car. 

(b) Prompt: A single clock is sitting on a table.

(a) Prompt: An as"onaut is riding a horse.

(a) Prompt: A sunset.
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(b) Prompt: !e Starry Night.

(c) Prompt: A badger next to a tree trunk. A small waterfall in the 
background.

(d) Prompt: A raccoon wearing formal clothes and wearing a tophat. 
Oil painting in the style of abstract cubism.

(e) Prompt: A raccoon wearing formal clo"es and wearing a #phat. 
Oil pain$ng in "e s%le of Vincent Van Gogh.

(g) Prompt: a cat pa&ing a crystal ba' wi" "e number 7 wri&en on 
it in black marker

(f) Prompt: Anime i'us(a$on of "e Great Pyramid si&ing next # 
"e Par"enon under a blue night sky of roiling energy.

(h) Prompt: A woman with long orange hair over a background that 
is a sketch of a city skyline.

(i) Prompt: A s#p sign wi" a large (ee behind it.

(j) Prompt: A pain$ng of a fox in "e s%le of !e Starry Night.
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Visualization of the learned attention maps.
This indicates that AFA can effectively ensemble 
diffusion models based on context and timesteps.

Greater tolerance for 
fewer inference steps.


